CHEMOKINES IN THE PATHOGENESIS OF MULTIPLE SCLEROSIS

Cover Page

Cite item

Full Text

Abstract

The review content the publications of the previous 5-7 years mainly from Pubmed devoted to the role of chemoines in the infiltration of innate and adaptive immunity cells into the brain with multiple sclerosis.

About the authors

G. F. Zheleznikova

Research Institute of Children Infections of the Federal Medico-Biological Agency of Russia

Author for correspondence.
Email: zheleznikova.galina@gmail.com

MD, PhD, Professor, Senior Research Associate of the Department of Clinical Laboratory Diagnostic

197022, Saint-Petersburg, ul. Prof. Popova 9

Russian Federation

N. V. Skripchenko

Research Institute of Children Infections of the Federal Medico-Biological Agency of Russia

Email: fake@neicon.ru

Doctor of Medical Science, Professor, Vice-Director for Scientific Work

Saint-Petersburg Russian Federation

L. A. Alekseeva

Research Institute of Children Infections of the Federal Medico-Biological Agency of Russia

Email: fake@neicon.ru

PhD, MD (Biology), Leading Research Associate of the Department of Clinical Laboratory Diagnostic

Saint-Petersburg Russian Federation

E. Y. Skripchenko

Research Institute of Children Infections of the Federal Medico-Biological Agency of Russia

Email: fake@neicon.ru

PhD, Head of Children’s Neurologic Department

Saint-Petersburg Russian Federation

References

  1. Железникова Г. Ф., Скрипченко Н. В., Иванова Г. П., Суровцева А. В., Скрипченко Е. Ю. Герпесвирусы и рассеянный склероз. Журнал неврологии и психиатрии им. С. С. Корсакова 2016, 9, 125-135.
  2. Железникова Г. Ф., Скрипченко Н. В., Иванова Г. П., Суровцева А. В., Скрипченко Е. Ю. Факторы иммунопатогенеза рассеянного склероза. Российский иммунологический журнал 2015, 9(3), 261-282.
  3. Ярилин А. А. Иммунология: учебник. ГЭОТАР-Медиа, Москва 2010, 752 с.
  4. Bajetto A., Bonavia R., Barbero S., Florio T., Schettini G. Chemokines and their receptors in the central nervous system. Front Neuroendocrinol. 2001, 22(3), 147-184.
  5. Réaux-Le Goazigo A., Van Steenwinckel J., Rostène W., Mélik Parsadaniantz S. Current status of chemokines in the adult CNS. Prog. Neurobiol. 2013, 104, 67-92.
  6. Williams J., Holman D., Klein R. Chemokines in the balance: maintenance of homeostasis and protection at CNS barriers. Front Cell Neurosci. 2014, 28(8),154.
  7. Semple B., Kossmann T., Morganti-Kossmann M. Role of chemokines in CNS health and pathology: a focus on the CCL2/CCR2 and CXCL8/CXCR2 networks. J. Cereb. Blood Flow Metab. 2010, 30(3), 459-473.
  8. Zeis T., Enz L., Schaeren-Wiemers N. The immunomodulatory oligodendrocyte. Brain Res. 2016, 1641(Pt A), 139-148.
  9. Kremer D., Cui Q., Göttle P., Kuhlmann T., Hartung H., Antel J., Küry P. CXCR7 Is Involved in Human Oligodendroglial Precursor Cell Maturation. PLoS One. 2016, 11(1), e0146503.
  10. Moore C., Cui Q., Warsi N., Durafourt B., Zorko N., Owen D., Antel J., Bar-Or A. Direct and indirect effects of immune and central nervous system-resident cells on human oligodendrocyte progenitor cell differentiation. J. Immunol. 2015, 194(2), 761-772.
  11. Lisak R., Nedelkoska L., Studzinski D., Bealmear B., Xu W., Benjamins J. Cytokines regulate neuronal gene expression: differential effects of Th1, Th2 and monocyte/macrophage cytokines. J. Neuroimmunol. 2011, 238(1-2), 19-33.
  12. Parajuli B., Horiuchi H., Mizuno T., Takeuchi H., Suzumura A. CCL11 enhances excitotoxic neuronal death by producing reactive oxygen species in microglia. Glia. 2015, 63(12), 2274-2284.
  13. Akimoto N., Ifuku M., Mori Y., Noda M. Effects of chemokine (C-C motif) ligand 1 on microglial function. Biochem. Biophys. Res. Commun. 2013, 436(3), 455-461.
  14. van Noort J., Bsibsi M., Gerritsen W., van der Valk P., Bajramovic J., Steinman L., Amor S. Alphab-crystallin is a target for adaptive immune responses and a trigger of innate responses in preactive multiple sclerosis lesions. J. Neuropathol. Exp. Neurol. 2010, 69(7), 694-703.
  15. Bsibsi M., Peferoen L., Holtman I., Nacken P., Gerritsen W., Witte M., van Horssen J., Eggen B., van der Valk P., Amor S., van Noort J. Demyelination during multiple sclerosis is associated with combined activation of microglia/macrophages by IFN-γ and alpha B-crystallin. Acta Neuropathol. 2014, 128(2), 215-229.
  16. Holman D., Klein R., Ransohoff R. The blood-brain barrier, chemokines and multiple sclerosis. Biochim. Biophys. Acta. 2011, 1812(2), 220-230.
  17. Man S., Tucky B., Cotleur A., Drazba J., Takeshita Y., Ransohoff R. CXCL12-induced monocyte-endothelial interactions promote lymphocyte transmigration across an in vitro blood-brain barrier. Sci. Transl. Med. 2012, 4(119), 119ra14.
  18. Subileau E., Rezaie P., Davies H., Colyer F., Greenwood J., Male D., Romero I. Expression of chemokines and their receptors by human brain endothelium: implications for multiple sclerosis. J. Neuropathol. Exp. Neurol. 2009, 68(3), 227-240.
  19. Strazielle N., Creidy R., Malcus C., Boucraut J., Ghersi-Egea J. T-lymphocytes traffic into the brain across the blood-CSF barrier: evidence using a reconstituted choroid plexus epithelium. PLoS One. 2016, 11(3), e0150945.
  20. Comini-Frota E., Teixeira A., Angelo J., Andrade M., Brum D., Kaimen-Maciel D., Foss N., Donadi E. Evaluation of serum levels of chemokines during interferon-β treatment in multiple sclerosis patients: a 1-year, observational cohort study. CNS Drugs. 2011, 25(11), 971-981.
  21. Tejera-Alhambra M., Casrouge A., de Andrés C., Seyfferth A., Ramos-Medina R., Alonso B., Vega J., Fernández-Paredes L., Albert M., Sánchez-Ramón S. Plasma biomarkers discriminate clinical forms of multiple sclerosis. PLoS One. 2015, 10(6), e0128952.
  22. Bielekova B., Komori M., Xu Q., Reich D., Wu T. Cerebrospinal fluid IL-12p40, CXCL13 and IL-8 as a combinatorial biomarker of active intrathecal inflammation. PLoS One. 2012, 7(11), e48370.
  23. Matsushita T., Tateishi T., Isobe N., Yonekawa T., Yamasaki R., Matsuse D., Murai H., Kira J. Characteristic cerebrospinal fluid cytokine/chemokine profiles in neuromyelitis optica, relapsing remitting or primary progressive multiple sclerosis. PLoS One. 2013, 8(4), e61835.
  24. Edwards K., Goyal J., Plavina T., Czerkowicz J., Goelz S., Ranger A., Cadavid D., Browning J. Feasibility of the use of combinatorial chemokine arrays to study blood and CSF in multiple sclerosis. PLoS One. 2013, 8(11), e81007.
  25. Vogel D., Heijnen P., Breur M., de Vries H., Tool A., Amor S., Dijkstra C. Macrophages migrate in an activation-dependent manner to chemokines involved in neuroinflammation. J. Neuroinflammation 2014, 11, 23.
  26. Mahad D., Callahan M., Williams K., Ubogu E., Kivisäkk P., Tucky B., Kidd G., Kingsbury G., Chang A., Fox R., Mack M., Sniderman M., Ravid R., Staugaitis S., Stins M., Ransohoff R. Modulating CCR2 and CCL2 at the blood-brain barrier: relevance for multiple sclerosis pathogenesis. Brain 2006, 129(Pt 1), 212-223.
  27. Prins M., Dutta R., Baselmans B., Brevé J., Bol J., Deckard S., van der Valk P., Amor S., Trapp B., de Vries H., Drukarch B., van Dam A. Discrepancy in CCL2 and CCR2 expression in white versus grey matter hippocampal lesions of multiple sclerosis patients. Acta Neuropathol. Commun. 2014, 2, 98.
  28. Gouwy M., Struyf S., Noppen S., Schutyser E., Springael J., Parmentier M., Proost P., Van Damme J. Synergy between coproduced CC and CXC chemokines in monocyte chemotaxsis through receptor-mediated events. Mol. Pharmacol. 2008, 74(2), 485-495.
  29. Khorramdelazad H., Bagheri V., Hassanshahi G., Zeinali M., Vakilian A. New insights into the role of stromal cell-derived factor 1 (SDF-1/CXCL12) in the pathophysiology of multiple sclerosis. J. Neuroimmunol. 2016, 290, 70-75.
  30. McCandless E., Piccio L., Woerner B., Schmidt R., Rubin J., Cross A., Klein R. Pathological expression of CXCL12 at the blood-brain barrier correlates with severity of multiple sclerosis. Am. J. Pathol. 2008, 172(3), 799-808.
  31. Moll N., Cossoy M., Fisher E., Staugaitis S., Tucky B., Rietsch A., Chang A., Fox R., Trapp B., Ransohoff R. Imaging correlates of leukocyte accumulation and CXCR 4/CXCL12 in multiple sclerosis. Arch. Neurol. 2009, 66(1), 44-53.
  32. Almasi S., Aliparasti M., Farhoudi M., Babaloo Z., Baradaran B., Zamani F., Sadeghi-Bazargani H., Mostafaei S., Hokmabadi E. Quantitative evaluation of CXCL8 and its receptors (CXCR1 and CXCR2) gene expression in Iranian patients with multiple sclerosis. Immunol. Invest. 2013, 42(8), 737-748.
  33. Matejčíková Z., Mareš J., Přikrylová Vranová H., Klosová J., Sládková V., Doláková J., Zapletalová J., Kaňovský P. Cerebrospinal fluid inflammatory markers in patients with multiple sclerosis: a pilot study. J. Neural. Transm. (Vienna) 2015, 122(2), 273-277.
  34. Железникова Г. Ф., Скрипченко Н. В., Иванова Г. П., Суровцева А. В., Монахова Н. Е. Цитокины и герпесвирусы при рассеянном склерозе у детей. Инфекция и иммунитет 2015, 5(4), 349-358.
  35. Rossi S., Motta C., Studer V., Macchiarulo G., Germani G., Finardi A., Furlan R., Martino G., Centonze D. Subclinical central inflammation is risk for RIS and CIS conversion to MS. Mult. Scler. 2015, 21(11), 1443-1452.
  36. Rumble J., Huber A., Krishnamoorthy G., Srinivasan A., Giles D., Zhang X., Wang L., Segal B. Neutrophil-related factors as biomarkers in EAE and MS. J. Exp. Med. 2015, 212(1), 23-35.
  37. Michael B., Elsone L., Griffiths M., Faragher B., Borrow R., Solomon T., Jacob A. Post-acute serum eosinophil and neutrophil-associated cytokine/ chemokine profile can distinguish between patients with neuromyelitis optica and multiple sclerosis; and identifies potential pathophysiological mechanisms – a pilot study. Cytokine 2013, 64(1), 90-96.
  38. Serrano-Pertierra E., Blanco-Gelaz M., Oliva-Nacarino P., Martínez-Camblor P., Villafani J., López-Larrea C., Cernuda-Morollón E. Increased natural killer cell chemotaxis to CXCL12 in patients with multiple sclerosis. J. Neuroimmunol. 2015, 282, 39-44.
  39. Andalib A., Doulabi H., Najafi M., Tazhibi M., Rezaie A. Expression of chemokine receptors on Th1/Th2 CD4 + lymphocytes in patients with multiple sclerosis. Iran. J. Immunol. 2011, 8(1), 1-10.
  40. Liu K., Dorovini-Zis K. Differential regulation of CD4 + T cell adhesion to cerebral microvascular endothelium by the β-chemokines CCL2 and CCL3. Int. J. Mol. Sci. 2012, 13(12), 16119-16140.
  41. Mazzi V. Cytokines and chemokines in multiple sclerosis. Clin. Ter. 2015, 166(1), e62-66.
  42. Jatczak-Pawlik I., Książek-Winiarek D., Wojkowska D., Jóźwiak K., Jastrzębski K., Pietruczuk M., Głąbiński A. The impact of multiple sclerosis relapse treatment on migration of effector T cells. Preliminary study. Neurol. Neurochir. Pol. 2016, 50(3), 155-162.
  43. Szczuciński A., Losy J. CCL5, CXCL10 and CXCL11 chemokines in patients with active and stable relapsing-remitting multiple sclerosis. Neuroimmunomodulation 2011, 18(1), 67-72.
  44. Mori F., Nisticò R., Nicoletti C., Zagaglia S., Mandolesi G., Piccinin S., Martino G., Finardi A., Rossini P., Marfia G., Furlan R., Centonze D. RANTES correlates with inflammatory activity and synaptic excitability in multiple sclerosis. Mult. Scler. 2016, 22(11), 1405-1412.
  45. Rentzos M., Nikolaou C., Rombos A., Evangelopoulos M., Dimitrakopoulos A., Kararizou E., Koutsis G., Zoga M., Tsoutsou A., Sfangos K. Circulating interleukin-15 and RANTES chemokine in MS patients: effect of treatment with methylprednisolone in patients with relapse. Neurol. Res. 2010, 32(7), 684-689.
  46. Chen P., Zhao W., Guo Y., Xu J., Yin M. CX3CL1/ CX3CR1 in Alzheimer’s Disease: A Target for Neuroprotection. Biomed. Res. Int. 2016, 2016, 8090918.
  47. Blauth K., Zhang X., Chopra M., Rogan S., Markovic-Plese S. The role of fractalkine (CX3CL1) in regulation of CD4(+) cell migration to the central nervous system in patients with relapsing-remitting multiple sclerosis. Clin. Immunol. 2015, 157(2), 121-132.
  48. Annunziato F., Cosmi L., Santarlasci V., Maggi L., Liotta F., Mazzinghi B., Parente E., Filì L., Ferri S., Frosali F., Giudici F., Romagnani P., Parronchi P., Tonelli F., Maggi E., Romagnani S. Phenotypic and functional features of human Th17 cells. J. Exp. Med. 2007, 204(8), 1849-61.
  49. Kalinowska-Łyszczarz A., Szczuciński A., Pawlak M., Losy J. Clinical study on CXCL13, CCL17, CCL20 and IL-17 as immune cell migration navigators in relapsing-remitting multiple sclerosis patients. J. Neurol. Sci. 2011, 300(1-2), 81-85.
  50. Jafarzadeh A., Bagherzadeh S., Ebrahimi H., Hajghani H., Bazrafshani M., Khosravimashizi A., Nemati M., Gadari F., Sabahi A., Iranmanesh F., Mohammadi M., Daneshvar H. Higher circulating levels of chemokine CCL20 in patients with multiple sclerosis: evaluation of the influences of chemokine gene polymorphism, gender, treatment and disease pattern. J. Mol. Neurosci. 2014, 53(3), 500-505.
  51. Khaiboullina S., Gumerova A., Khafizova I., Martynova E., Lombardi V., Bellusci S., Rizvanov A. CCL27: Novel Cytokine with Potential Role in Pathogenesis of Multiple Sclerosis. Biomed. Res. Int. 2015, 2015, 189638.
  52. Paterka M., Siffrin V., Voss J., Werr J., Hoppmann N., Gollan R., Belikan P., Bruttger J., Birkenstock J., Jung S., Esplugues E., Yogev N., Flavell R., Bopp T., Zipp F. Gatekeeper role of brain antigen-presenting CD11c + cells in neuroinflammation. EMBO J. 2016, 35(1), 89-101.
  53. Galimberti D., Fenoglio C., Comi C., Scalabrini D., De Riz M., Leone M., Venturelli E., Cortini F., Piola M., Monaco F., Bresolin N., Scarpini E. MDC/ CCL22 intrathecal levels in patients with multiple sclerosis. Mult. Scler. 2008, 14(4), 547-549.
  54. Jafarzadeh A., Ebrahimi H., Bagherzadeh S., Zarkesh F., Iranmanesh F., Najafzadeh A., Khosravimashizi A., Nemati M., Sabahi A., Hajghani H., Daneshvar H., Mohammadi M. Lower serum levels of Th2-related chemokine CCL22 in women patients with multiple sclerosis: a comparison between patients and healthy women. Inflammation 2014, 37(2), 604-610.
  55. Schneider-Hohendorf T., Stenner M., Weidenfeller C., Zozulya A., Simon O., Schwab N., Wiendl H. Regulatory T cells exhibit enhanced migratory characteristics, a feature impaired in patients with multiple sclerosis. Eur. J. Immunol. 2010, 40(12), 3581-3590.
  56. Karin N., Wildbaum G., Thelen M. Biased signaling pathways via CXCR 3 control the development and function of CD4 + T cell subsets. J. Leukoc. Biol. 2016, 99(6), 857-862.
  57. Festa E., Hankiewicz K., Kim S., Skurnick J., Wolansky L., Cook S., Cadavid D. Serum levels of CXCL13 are elevated in active multiple sclerosis. Mult. Scler. 2009, 15(11), 1271-1279.
  58. Alvarez E., Piccio L., Mikesell R., Klawiter E., Parks B., Naismith R., Cross A. CXCL13 is a biomarker of inflammation in multiple sclerosis, neuromyelitis optica, and other neurological conditions. Mult. Scler. 2013, 19(9), 1204-1208.
  59. Ragheb S., Li Y., Simon K., VanHaerents S., Galimberti D., De Riz M., Fenoglio C., Scarpini E., Lisak R. Multiple sclerosis: BAFF and CXCL13 in cerebrospinal fluid. Mult. Scler. 2011, 17(7), 819-829.
  60. Kowarik M., Cepok S., Sellner J., Grummel V., Weber M., Korn T., Berthele A., Hemmer B. CXCL13 is the major determinant for B cell recruitment to the CSF during neuroinflammation. J. Neuroinflammation 2012, 9, 93.
  61. Zhong X., Wang H., Dai Y., Wu A., Bao J., Xu W., Cheng C., Lu Z., Qiu W., Hu X. Cerebrospinal fluid levels of CXCL13 are elevated in neuromyelitis optica. J. Neuroimmunol. 2011, 240-241, 104-108.
  62. Kothur K., Wienholt L., Tantsis E., Earl J., Bandodkar S., Prelog K., Tea F., Ramanathan S., Brilot F., Dale R. B Cell, Th17, and Neutrophil Related Cerebrospinal Fluid Cytokine/Chemokines Are Elevated in MOG Antibody Associated Demyelination. PLoS One. 2016, 11(2), e0149411.
  63. Sellebjerg F., Börnsen L., Khademi M., Krakauer M., Olsson T., Frederiksen J., Sörensen P. Increased cerebrospinal fluid concentrations of the chemokine CXCL13 in active MS. Neurology 2009, 73(23), 2003-2010.
  64. Khademi M., Kockum I., Andersson M.L., Iacobaeus E., Brundin L., Sellebjerg F., Hillert J., Piehl F., Olsson T. Cerebrospinal fluid CXCL13 in multiple sclerosis: a suggestive prognostic marker for the disease course. Mult. Scler. 2011, 17(3), 335-343.
  65. Brettschneider J., Czerwoniak A., Senel M., Fang L., Kassubek J., Pinkhardt E., Lauda F., Kapfer T., Jesse S., Lehmensiek V., Ludolph A., Otto M., Tumani H. The chemokine CXCL13 is a prognostic marker in clinically isolated syndrome (CIS). PLoS One. 2010, 5(8), e11986.
  66. Ferraro D., Galli V., Vitetta F., Simone A., Bedin R., Del Giovane C., Morselli F7., Filippini M., Nichelli P., Sola P. Cerebrospinal fluid CXCL13 in clinically isolated syndrome patients: Association with oligoclonal IgM bands and prediction of Multiple Sclerosis diagnosis. J. Neuroimmunol. 2015, 283, 64-69.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Zheleznikova G.F., Skripchenko N.V., Alekseeva L.A., Skripchenko E.Y.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № 77 - 11525 от 04.01.2002.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies