Preview

Российский иммунологический журнал

Расширенный поиск

ИНТЕРЛЕЙКИН-7

Полный текст:

Аннотация

IL‑7 продуцируется эпителиальным клетками в тимусе, костном мозге, кишечнике, печени, дендритными клетками, клетками скелетной мускулатуры, фибробластными ретикулярными дендритными клетками, кератиноцитами, но не продуцируется нормальными лимфоцитами. IL‑7 вызывает пролиферацию незрелых Т‑ и В‑клеток у человека и животных, является критическим цитокином для клеточного развития и гомеостаза. IL‑7Rα (CD127) экспрессируется на незрелых В‑клетках, а также на CD4+CD8+ наивных Т‑лимфоцитах и клетках памяти, естественных киллерах, тимоцитах (кроме CD4/CD8 дважды положительных тимоцитов) и клетках стромы костного мозга. IL‑7Rα представляет собой гетеродимерный комплекс трансмембранных белков: α‑цепи рецептора интерлейкина 7 (IL‑7Rα, или CD127) и трансмембранного гликопротеина, γ‑цепи рецептора интерлейкина 2(IL‑2Rγ, γ‑цепь или CD132), а также совместно с рецепторами IL‑4, IL‑9, IL‑13, IL‑15, IL‑21. Масса рецептора составляет 60–90 kD. IL‑7 играет одну из ключевых ролей в функционировании врожденного и адаптивного иммунитета.

Об авторах

О. Ф. Еремина
ФГБОУ ВО Московский государственный медико-стоматологический университет им. А.И. Евдокимова, Научно-исследовательский медико-стоматологический Институт
Россия

д. м. н., ведущий научный сотрудник лаборатории патогенеза и методов лечения инфекционных заболеваний

105037, г. Москва, ул. Первомайская, д. 14



И. П. Балмасова
ФГБОУ ВО Московский государственный медико-стоматологический университет им. А.И. Евдокимова, Научно-исследовательский медико-стоматологический Институт
Россия

д. м. н., профессор, заведующая лабораторией патогенеза и методов лечения инфекционных заболеваний

г. Москва



М. М. Гультяев
ФГБОУ ВО Московский государственный медико-стоматологический университет им. А.И. Евдокимова, Научно-исследовательский медико-стоматологический Институт
Россия

к. м. н., старший научный сотрудник лаборатории патогенеза и методов лечения инфекционных заболеваний 

г. Москва



Н. В. Глухоедова
ФГБОУ ВО Московский государственный медико-стоматологический университет им. А.И. Евдокимова, Научно-исследовательский медико-стоматологический Институт
Россия

к. м. н., младший научный сотрудник лаборатории патогенеза и методов лечения инфекционных заболеваний 

г. Москва



Н. Д. Ющук
ФГБОУ ВО Московский государственный медико-стоматологический университет им. А.И. Евдокимова, Научно-исследовательский медико-стоматологический Институт
Россия

д. м. н., академик РАМН, зав. кафедрой инфекционных болезней 

г. Москва



Список литературы

1. Patil N.K., Bohannon J.K., Sherwood E.R. Immunotherapy: A promising approach to reverse sepsis-induced immunosuppression. Pharmacology Reseorch. 2016; l, 25, 111, 688–702.

2. Hanabuchi S., Ito T., Park W.R., Watanabe N., Shaw J.L., Roman E., Arima K., Wang Y.H., Voo K.S., Cao W., Liu Y.J. Thymic stromal lymphopoietin-activated plasmacytoid dendritic cells induce the generation of FOXP3+ regulatory T cells in human thymus. J Immunol. 2010, 15,184(6), 2999–3007.

3. Nguyen T.P., Bazdar D.A., Mudd J.C., Lederman M.M., Harding C.V., Hardy G.A., Sieg S.F. Interferon-α inhibits CD4 T cell responses to interleukin-7 and interleukin-2 and selectively interferes with Akt signaling. J Leukoc Biol. 2015, 97(6), 1139–1146.

4. Penaranda C., Kuswanto W., Hofmann J., Kenefeck R., Narendran P., Walker L.S., Bluestone J.A., Abbas A.K., Dooms H. IL-7 receptor blockade reverses autoimmune diabetes by promoting inhibition of effector/memory T cells. Proc Natl Acad Sci U S A. 2012, 31,109(31), 12668–12673.

5. Ribeiro A.R., Rodrigues P.M., Meireles C., Di Santo J.P., Alves N.L. Thymocyte selection regulates the homeostasis of IL-7-expressing thymic cortical epithelial cells in vivo. J Immunol. 2013; 1; 191(3):1200–1209.

6. Carreno, Beatriz M.; Becker-Hapak, Michelle; Linette, Gerald P. CD40 regulates human dendritic cell-derived IL-7 production that, in turn, contributes to CD8+ T-cell antigen-specific expansion. Immunology & Cell Biology. 2009, 87 Issue 2,167–183.

7. Allgäuer A., Schreiner E., Ferrazzi F., Ekici A.B., Gerbitz A., Mackensen A., Völkl S. IL-7 Abrogates the Immunosuppressive Function of Human Double-Negative T Cells by Activating Akt/mTOR Signaling. J Immunol. 2015, 1,195(7), 3139–3148.

8. Auderset F., Desgranges F., Schuster S., Koch U., Charmoy M., Merck E., Fiorini E., Wilson A., Favre S., Trottein F., Alexander J., Luther S.A., MacDonal H.R., Radtke F., Tacchini-Cottier F. Notch signaling regulates follicular helper T cell differentiation. J Immunol. 2013, 191(5), 2344–2345.

9. Fry T.J., Mackall C.L. Interleukin-7: from bench to clinic. Blood. 2013, 29, 11, 3892–3904.

10. Nobles C., Bertone-Johnson E.R., Ronnenberg A.G., Faraj J.M., Zagarins S., Takashima-Uebelhoer B.B., Whitcomb B.W. Correlation of urine and plasma cytokine levels among reproductive-aged women. Eur J Clin Invest. 2015, 45(5), 460–465.

11. Iwabuchi M., Narita M., Uchiyama T., Iwaya S., Oiwa E., Nishizawa Y., Hashimoto S., Bonehill A., Kasahara N., Takizawa J., Takahashi M. Enhancement of the antigen-specific cytotoxic T lymphocyte-inducing ability in the PMDC11 leukemic plasmacytoid dendritic cell line via lentiviral vector-mediated transduction of the caTLR4 gene. Mol Med Rep. 2015, 12(2), 2443–2450.

12. Huang H.Y., Luther S.A. Expression and function of interleukin-7 in secondary and tertiary lymphoid organs. Review. Semin Immunol. 2012, 24(3), 175–89.

13. Chetoui N., Boisvert M., Gendron S., Aoudjit F. Interleukin-7 promotes the survival of human CD4+ effector/memory T cells by up-regulating Bcl-2 proteins and activating the JAK/STAT signalling pathway. Immunology. 2010, 130(3), 418–426.

14. O’Doherty C., Alloza I., Rooney M., Vandenbroeck K. IL7RA polymorphisms and chronic inflammatory arthropathies. Tissue Antigens. 2009, 74(5), 429–431.

15. Passtoors W.M., van den Akker E.B., Deelen J., Maier A.B., van der Breggen R., Jansen R., Trompet S., van Heemst D., Derhovanessian E., Pawelec G., van Ommen G.J., Slagboom P.E., Beekman M. IL7R gene expression network associates with human healthy ageing. Immun Ageing. 2015, 11, 12, 21–27.

16. Vogt T.K., Link A., Perrin J., Finke D., Luther S.A. Novel function for interleukin-7 in dendritic cell development. Blood, 2009, 13, 17, 3961–3968.

17. Simonetta F., Chiali A., Cordier C., Urrutia A., Girault I., Bloquet S., Tanchot C., Bourgeois C. Increased CD127 expression on activated FOXP3+CD4+ regulatory T cells. Eur J Immunol. 2010, 40(9), 2528–2538.

18. Vignali D., Gürth C.M., Pellegrini S., Sordi V., Sizzano F., Piemonti L., Monti P. IL-7 Mediated Homeostatic Expansion of Human CD4+CD25+FOXP3+ Regulatory T Cells After Depletion With Anti-CD25 Monoclonal Antibody. Transplantation. 2016, 100(9),1853–1861.

19. Hartgring S.A., Roon J.A., van Wijk M. Elevated expression of interleukin-7 receptor in inflamed joints mediates interleukin-7-induced immune activation in rheumatoid arthritis. Arthritis Rheum. 2009, 60, 2595–2605.

20. Normanton M., Alvarenga H., Hamerschlak N., Ribeiro A., Kondo A., Rizzo L.V., Marti L.C. Interleukin 7 plays a role in T lymphocyte apoptosis inhibition driven by mesenchymal stem cell without favoring proliferation and cytokines secretion. PLoS One. 2014, 3, 9(9): e.

21. Osborne L.C., Patton D.T., Seo J.H., Abraham N. Elevated IL-7 availability does not account for T cell proliferation in moderate lymphopenia. J Immunol. 2011, 15, 186(4), 1981–1988.

22. Simonetta F., Gestermann N., Martinet Kim Zita, Boniotto M., Tissières P., Seddon B., Bourgeois Ch. Interleukin-7 Influences FOXP3+CD4+ Regulatory T Cells Peripheral Homeostasis. PLoS ONE, 2012, 7 Issue 5, 1–12.

23. Yang H., Zhang W., Zhao L., Yang L., Zhang F., Tang F., He W., Zhang X. Are CD4+CD25-Foxp3+cells in untreated new-onset lupus patients regulatory T cells? Arthritis Res. Ther. 2009, 11, R153.

24. Tung J.N., Lee W.Y., Pai M.H., Chen W.J., Yeh C.L., Yeh S.L. Glutamine modulates CD8αα(+) TCRαβ(+) intestinal intraepithelial lymphocyte expression in mice with polymicrobial sepsis. Nutrition. 2013;29(6): 911–917.

25. Younas M., Hue S., Lacabaratz C., Guguin A., Wiedemann A., Surenaud M., Beq S., Croughs T., Lelièvre J.D., Lévy Y. IL-7 modulates in vitro and in vivo human memory T regulatory cell functions through the CD39/ATP axis. J Immunol. 2013, 15, 191(6):3161–3168.

26. Palmer M.J., Mahajan V.S., Trajman L.C., Irvine D.J., Lauffenburger D.A., Chen J. Interleukin-7 receptor signaling network: an integrated systems perspective. Cell Mol Immunol. 2008, 5, 79–89.

27. Ribeiro D., Barata J.T. IL7R (interleukin 7 receptor). Atlas Genet Cytogenet Oncol Haematol. 2014, 18(4), 229–235.

28. Patton D.T., Plumb A.W., Redpath S.A., Osborne L.C., Perona-Wright G., Abraham N. The development and survival but not function of follicular B cells is dependent on IL-7Ra Tyr449 signaling. Plos One. 2014, 13, 9(3), e93316.

29. Hillen M.R., Radstake T.R., Hack C.E., van Roon J.A. Thymic stromal lymphopoietin as a novel mediator amplifying immunopathology in rheumatic disease. Rheumatology (Oxford). 2015, 54(10),1771–1179.

30. Henriques C.M., Rino J., Nibbs R.J., Graham G.J., Barata J.T. IL-7 induces rapid clathrin-mediated internalization and JAK3-dependent degradation of IL-7Ralpha in T cells. Blood 2010, 115(16), 3269–77.

31. Mourcin F., Breton C., Tellier J., Narang P., Chasson L., Jorquera A., Coles M., Schiff C., Mancini S.J. Galectin-1-expressing stromal cells constitute a specific niche for pre-BII cell development in mouse bone marrow. Blood. 2011, 117(24), 6552–61.

32. Jensen C.T., S. Kharazi, C. Böiers, M. Cheng, A. Lübking, E. Sitnicka, S.E. Jacobsen. FLT3 ligand and not TSLP is the key regulator of IL-7–independent B-1 and B-2 B lymphopoiesis. 2008, Blood, 112, 2297–2304.

33. Bazdar D.A., Kalinowska M., Panigrahi S., Sieg S.F. Recycled IL-7 Can Be Delivered to Neighboring T Cells. J Immunol. 2015, 194(10), 4698–4704.

34. Maki K. MEK1/2 induces STAT5-mediated germline transcription of the TCRgamma locus in response to IL-7R signaling. J Immunol. 2008, 181(1), 494–502.

35. Čierny D., Hányšová S., Michalik J., Kantorová E., Kurča E., Škereňová M., Lehotský J. Genetic variants in interleukin 7 receptor α chain (IL-7Ra) are associated with multiple sclerosis risk and disability progression in Central European Slovak population. J Neuroimmunol. 2015, 15, 282, 80–84.

36. Liu Z.H., Wang M.H., Ren H.J., Qu W., Sun L.M., Zhang Q.F., Qiu X.S., Wang E.H. Interleukin 7 signaling prevents apoptosis by regulating bcl-2 and bax via the p53 pathway in human non-small cell lung cancer cells. Int J Clin Exp Pathol. 2014, 15,7(3), 870–881.

37. O’Doherty C., Alloza I., Rooney M., Vandenbroeck K. IL7RA polymorphisms and chronic inflammatory arthropathies. Tissue Antigens. 2009, 74(5), 429–431.

38. Guimond M., Veenstra R.G., Grindler D.J. Interleukin 7 signalingin dendritic cells regulates the homeostatic proliferation and niche size of CD4+ T cells. Nat Immunol. 2009, 10, 149–157.

39. Jin J.O., Shinohara Y., Yu Q. Innate immune signaling induces interleukin-7 production from salivary gland cells and accelerates the development of primary Sjögren’s syndrome in a mouse model.. PLoS One. 2014, 9(9), e108573.

40. Plumb A.W., Patton D.T., Seo J.H., Loverday E.K., Redpath S.A., Osborne L.C., Perona-Wright G., Abraham N. IL-7 mediates protection against influenza A. Interleukin 7, but not Thimic stromal lymphpoietin plays a key role in the T-cell response to influenza A virus. Plos One 2012, 7 (11).

41. Silva A., Laranjeira A.B., Martins L.R., Cardoso B.A., Demengeot J., Yunes J.A., Seddon B., Barata J.T. IL-7 contributes to the progression of human T-cell acute lymphoblastic leukemias. Cancer Res. 2011, 71(14), 4780–4789.

42. Shindo Y., Unsinger J., Burnham C.A., Green J.M., Hotchkiss R.S. Interleukin-7 and anti-programmed cell death 1 antibody have differing effects to reverse sepsis-induced immunosuppression. Shock. 2015, 43(4), 334–43.

43. Vandergeeten C., Fromentin R., DaFonseca S., Lawani M.B., Sereti I., Lederman M.M., Ramgopal M., Routy J.P., Sekaly R.P., Chomont N.B. Interleukin-7 promotes HIV persistence during B antiretroviral therapy.Blood. 2013, 121(21), 4321–4329.

44. Reth M., Nielsen P. Signaling circuits in early B-cell development. Adv. Imunology. 2014, 122, 129–175.

45. van Roon J.A., Hartgring S., Willis C.R., Bijlsma J., Lafeber F.P. Interleukin-7-aggravated joint inflammation and tissue destruction in collagen-induced arthritis is associated with T-cell and B-cell activation. Arthritis Research & Therapy. 2012, 14, R137.

46. Dooms H. Interleukin-7: Fuel for the autoimmune attack. J Autoimmun. 2013, 45, 40–48.

47. Kielsen K., Jordan K.K., Uhlving H.H., Pontoppidan P.L., Shamim Z., Ifversen M., Heilmann C., Nielsen C.H., Sengeløv H., Ryder L.P. T cell Reconstitution in Allogeneic Haematopoie-tic Stem Cell Transplantation: Prognostic Significance of Plasma Interleukin-7.Scand J Immunol. 2015 Jan; 81(1):72–80).

48. Qiu Y., Peng K., Liu M., Xiao W., Yang H. CD8αα TCRαβ Intraepithelial Lymphocytes in the Mouse Gut.Dig Dis Sci. 2016, 1(6), 1451–1460.

49. Levy Y., Lacabaratz C., Weiss L., Viard J.P., Goujard C., Lelievre J.D., Boue F., Molina J.M., Rouzioux C., Avettand-Fenoel V., Croughs T., Beq S., Thiebaut R., Chene.G, Morre M., Delfraissy J.F. Enhanced T cell recovery in HIV-1-infected adults through IL-7 treatment. J Clin Invest., 2009, 119(4), 997–1007.

50. Chai Q., Onder L., Scandella E., Gil-Cruz C., Perez-Shibayama C., Danuser R., Sparwasser T., Luther S.A., Thiel V., Rülicke T., Stein J.V., Hehlgans T., Ludewig B. Maturation of lymph node fibroblastic reticular cells from myofibroblastic precursors is critical for antiviral immunity. Immunity. 2013, 23, 38(5), 1013–1024.

51. Shriner A.K., Liu H., Sun G., Guimond M., Alugupalli K.R. IL-7-dependent B lymphocytes are essential for the anti-polysaccharide response and protective immunity to Streptococcus pneumoniae.J Immunol. 2010, 1, 185(1), 525–31.

52. Sieg S.F. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Curr HIV Res. 2012, 10(4), 341–347.

53. Hall B.M., Verma N.D., Tran G.T., Hodgkinson S.J. Distinct regulatory CD4+T cell subsets; differences between naïve and antigen specific T regulatory cells. Curr Opin Immunol. 2011, 23(5), 641–647.

54. Demehri S., Morimoto M., Holtzman M.J., Kopan. Skin-derived TSLP triggers regression from epidermal-barrier defects to asthma. PLoS Biol, 2009, 7 (5).

55. Gomez-Eerland R., Nuijen B, Heemskerk B, van Rooij N., van den Berg J.H., Beijnen J.H., Uckert W., Kvistborg P., Schumacher T.N., Haanen J.B., Jorritsma A. Manufacture of gene-modified human T-cells with a memory stem/central memory phenotype. Hum Gene Ther Methods. 2014, 25(5), 277–287.

56. Kim M.S., Chung N.G., Yoo N.J, Lee S.N. Somatic mutation of IL7R exon 6 in acute leukemias and solid cancers. Hum. Patol.,2013, 44(4), 551–555.

57. Jaworski M., Marsland B.J., Gehrig J., Held W., Favre S., Luther S.A., Perroud M., Golshayan D., Gaide O., Thome M. Malt1 protease inactivation efficiently dampens immune responses but causes spontaneous autoimmunity. EMBO Journal. 2014, 33(23), 2765–2781.

58. Zhenlong Chen, Seungjae Kim, Nathan D. Chamberlain, Sarah R. Pickens, M.V. Volin, S. Volkov, S. Arami, J.W. Christman, B.S. Prabhakar, W. Swedler, A. Mehta, N. Sweiss, S. Shahrara. The Novel Role of IL-7 Ligation to IL-7 Receptor in Myeloid Cells of Rheumatoid Arthritis and Collagen–Induced Arthritis. J. Immunology, 2013, 190, 10–19.

59. Bikker A., van Woerkom J.M., Kruize A.A., Wenting-van Wijk M., de Jager W., Bijlsma J.W., Lafeber F.P., van Roon J.A. Increased expression of interleukin-7 in labial salivary glands of patients with primary Sjögren’s syndrome correlates with increased inflammation. Arthritis Rheum. 2010, 62(4), 969–677.

60. Crawley A.M., Faucher S., Angel J.B. Soluble IL-7R alpha (sCD127) inhibits IL-7 activity and is increased in HIV infection. J Immunol. 2010,184(9), 679–4685.


Для цитирования:


Еремина О.Ф., Балмасова И.П., Гультяев М.М., Глухоедова Н.В., Ющук Н.Д. ИНТЕРЛЕЙКИН-7. Российский иммунологический журнал. 2018;21(2):106-117.

For citation:


Eremina O.F., Balmasova I.P., Gultyaev M.M., Gluhoedova N.V., Yushchuk N.D. INTERLEUKIN‑7. Russian Journal of Immunology. 2018;21(2):106-117. (In Russ.)

Просмотров: 39


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1028-7221 (Print)