MORPHOFUNCTIONAL CHARACTERISTICS OF THE PROTECTIVE MECHANISMS OF NEUTROPHILS AGAINST BACTERIAL INFECTIONS AND THEIR CONTRIBUTION IN THE PATHOGENESIS OF PRO-INFLAMMATORY REACTIONS

Cover Page


Cite item

Full Text

Abstract

Infection is one of the leading causes of mortality and morbidity in the world. Neutrophils are an active and numerous effector link in the innate immune system, which protects the body from infection with pathogenic microorganisms. However, the contribution of neutrophils in the development of the infectious process was underestimated, despite the fact that the functions of this subclass of leukocytes have long been known as a pathogenetic element of inflammation. In addition to phagocytosis, these cells can mediate lesser-characterized antibacterial strategies – extracellular degranulation, and also, by releasing extracellular chromatin, nuclear protein and serine proteases, to form web-like fiber structures called neutrophilic extracellular traps (NETs). NETs can capture pathogens, cause endothelial dysfunction and pro-inflammatory immune responses. The phenomenon of NETs is a relatively new form of programmed cell death (NETosis), the significance of which in the development of the infectious process and the development of inflammation is not fully understood. NETosis has a high potential for further study of the pathogenesis of inflammation and the search for effective methods of treating infections. This review focuses on modern data on the basic protective strategies of neutrophils against bacterial infections and their contribution to the pathogenesis of proinflammatory reactions. Modern approaches to pharmacological modulation of various variants of antimicrobial mechanisms of neutrophils are discussed, which is promising in cases of complex treatment of infections associated with antibiotic-resistant strains of bacteria.

About the authors

E. V. Matosova

Somov Institute of Epidemiology and Microbiology

Author for correspondence.
Email: e_matosova@mail.ru

Junior Researcher of the Laboratory of Molecular Epidemiology and Microbiology

690087, Vladivostok, Sel’skaya, 1.

Russian Federation

B. G. Andryukov

Somov Institute of Epidemiology and Microbiology

Email: fake@neicon.ru

MD, Leading Researcher of the Laboratory of Molecular Epidemiology and Microbiology

Vladivostok

Russian Federation

References

  1. Borregaard N. Neutrophils, from marrow to microbes. Immunity. 2010; 33(5): 657–70. doi: 10.1016/j.immuni.2010.11.011.
  2. Leliefeld P.H., Wessels C.M., Leenen L.P., Koenderman L., Pillay J. The role of neutrophils in immune dysfunction during severe inflammation. Crit Care. 2016; 20: 73. doi: 10.1186/s13054–016–1250–4.
  3. Nathan C. Neutrophils and immunity: challenges and opportunities. Nat. Rev. Immunol. 2006; 6(3): 173–82. doi: 10.1038/nri1785.
  4. Mayadas T.N., Cullere X., Lowell C.A. The multifaceted functions of neutrophils. Annu Rev. Pathol. 2014; 9: 181–218. doi: 10.1146/ annurev-pathol-020712–164023.
  5. Segal A.W. How neutrophils kill microbes. Annu Rev. Immunol. 2005; 23: 197–223. doi: 10.1146/annurev.immunol.23.021704.115653. [доступ 11 сентября 2017] Адрес: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2092448/
  6. Urban C.F., Lourido S., Zychlinsky A. How do microbes evade neutrophil killing? Cell. Microbiol. 2006; 8(11): 1687–96. doi: 10.1111/j.1462–5822.2006.00792.x.
  7. Döhrmann S., Cole J.N., Nizet V. Conquering neutrophils. PLoS Pathog. 2016; 12(7): e1005682. doi: 10.1371/journal.ppat.1005682. [доступ 11 сентября 2017] Адрес: http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1005682
  8. Nauseef W.M. Neutrophils, from cradle to grave and beyond. Immunol. Rev. 2016; 273(1): 5–10. doi: 10.1111/imr.12463.
  9. Dunkelberger J.R., Song W.C. Complement and its role in innate and adaptive immune responses. Cell Res. 2010; 20(1): 34–50. doi: 10.1038/cr.2009.139. [доступ 11 сентября 2017] Адрес: https://www.nature.com/cr/journal/v20/n1/full/cr2009139a.html
  10. van Kessel K.P., Bestebroer J., van Strijp J.A. Neutrophil-mediated phagocytosis of Staphylococcus aureus. Front Immunol. 2014; 5: 467. doi: 10.3389/fimmu.2014.00467. [доступ 11 сентября 2017] Адрес: http://journal.frontiersin.org/article/10.3389/fimmu.2014.00467/full
  11. Rigby K.M., DeLeo F.R. Neutrophils in innate host defense against Staphylococcus aureus infections. Semin. Immunopathol. 2012; 34(2): 237–59. doi: 10.1007/s00281–011–0295–3. [доступ 11 сентября 2017] Адрес: https://link.springer.com/article/10.1007/s00281–011–0295–3
  12. Ford J.W., McVicar D.W. TREM and TREM-like receptors in inflammation and disease. Curr. Opin. Immunol. 2009; 21(1): 38–46. doi: 10.1016/j.coi.2009.01.009.
  13. Mócsai A. Diverse novel functions of neutrophils in immunity, inflammation, and beyond. J. Exp. Med. 2013; 210(7): 1283–99. doi: 10.1084/jem.20122220. [доступ 11 сентября 2017] Адрес: http://jem.rupress.org/content/210/7/1283.long
  14. Amulic B., Cazalet C., Hayes G.L., Metzler K.D., Zychlinsky A. Neutrophil function: from mechanisms to disease. Annu. Rev. Immunol. 2012; 30: 459–89. doi: 10.1146/annurev-immunol-020711–074942.
  15. Roos D., van Bruggen R., Meischl C. Oxidative killing of microbes by neutrophils. Microbes Infect. 2003; 5(14): 1307–15. doi: 10.1016/j.micinf.2003.09.009.
  16. Greenlee-Wacker M., DeLeo F.R., Nauseef W.M. How methicillin-resistant Staphylococcus aureus evade neutrophil killing. Curr Opin Hematol. 2015; 22(1): 30–5. doi: 10.1097/MOH.0000000000000096.
  17. Odobasic D., Kitching A.R., Holdsworth S.R. Neutrophil-mediated regulation of innate and adaptive immunity: the role of myeloperoxidase. J. Immunol. Res. 2016; 2016: 11. doi: 10.1155/2016/2349817.2349817. [доступ 17 сентября 2017] Адрес: http://dx.doi.org/10.1155/2016/2349817.
  18. Bardoel B.W., Kenny E.F., Sollberger G., Zychlinsky A. The Balancing Act of Neutrophils Cell Host and Microbe. Cell Host Microbe. 2014; 15(5): 526–36. doi: 10.1016/j.chom.2014.04.011. [доступ 11 сентября 2017] Адрес: http://www.cell.com/action/showImagesData?pii=S1931–3128%2814%2900145–0
  19. Klebanoff S.J. Myeloperoxidase: friend and foe. J. Leukoc Biol. 2005; 77(5): 598–625. doi: 10.1189/jlb.1204697. 28.
  20. Dapunt U., Hansch G.M., Arciola C.R. Innate Immune Response in Implant-Associated Infections: Neutrophils against Biofilms. Materials. 2016; 9(5); 387. [доступ 11 сентября 2017] Адрес: http://www.mdpi.com/1996–1944/9/5/387/htm
  21. Morozov V.I., Pryatkin S.A., Kalinski M.I., Rogozkin V.A. Effect of exercise to exhaustion on myeloperoxidase and lysozyme release from blood neutrophils. Eur. J. Appl. Physiol. 2003; 89(3–4): 257–62. doi: 10.1007/s00421–002–0755–5.
  22. Winterbourn C.C., Kettle A.J., Hampton M.B. Reactive oxygen species and neutrophil function. Annu Rev. Biochem. 2016; 85: 765–92. doi: 10.1146/annurev-biochem-060815–014442.
  23. Cardot-Martin E., Casalegno J.S., Badiou C., Dauwalder O., Keller D., Prévost G., Rieg S.; Kern W.V.; Cuerq C.; Etienne J.; Vandenesch F.; Lina G.; Dumitrescu O. α-Defensins partially protect human neutrophils against Panton-Valentine leukocidin produced by Staphylococcus aureus. Lett. Appl. Microbiol. 2015; 61(2): 158–64. doi: 10.1111/lam.12438.
  24. Frasca L., Lande R. Role of defensins and cathelicidin LL37 in auto-immune and auto-inflammatory diseases. Curr. Pharm. Biotechnol. 2012; 13(10): 1882–97. doi: 10.2174/138920112802273155.
  25. Nordenfelt P., Tapper H.J. Phagosome dynamics during phagocytosis by neutrophils. J. Leukoc. Biol. 2011; 90(2): 271–84. doi: 10.1189/jlb.0810457.
  26. Chebotar’ I.V. Mechanisms of antibiofilm immunity. Vestn. Ross. Akad. Med. Nauk. 2012; (12): 22–9.
  27. Schuerholz T., Brandenburg K., Marx G. Antimicrobial peptides and their potential application in inflammation and sepsis. CritCare. 2012; 16(2): 207. doi: 10.1186/cc11220. [доступ 17 сентября 2017] Адрес: https://doi.org/10.1186/cc11220
  28. Cojocaru I.M., Cojocaru M., Burcin C. Evaluation of granulocyte elastase as a sensitive diagnostic parameter of inflammation in first ischemic stroke. Rom. J. Intern. Med. 2006; 44(3): 317–21. [доступ 17 сентября 2017] Адрес: https://www.ncbi.nlm.nih.gov/pubmed/18386609
  29. Naegelen I., Beaume N., Plançon S., Schenten V., Tschirhart E.J., Bréchard S. Regulation of Neutrophil Degranulation and Cytokine Secretion: A Novel Model Approach Based on Linear Fitting. J. Immunol. Res. 2015; 2015: 817038. doi: 10.1155/2015/817038 [доступ 17 сентября 2017] Адрес: https://www.hindawi.com/journals/jir/2015/817038/
  30. Park C.B., Yi K.S., Matsuzaki K., Kim M.S., Kim S.C. Structure-activity analysis of buforin II, a histone H2A-derived antimicrobial peptide: the proline hinge is responsible for the cell-penetrating ability of buforin II. Proc. Natl. Acad. Sci. USA. 2000; 97(15): 8245–50. doi: 10.1073/pnas.150518097. [доступ 17 сентября 2017] Адрес: http://www.pnas.org/content/97/15/8245.long
  31. Malcolm K.C., Worthen G.S. Lipopolysaccharide stimulates p38-dependent induction of antiviral genes in neutrophils independently of paracrine factors. J. Biol. Chem. 2003; 278(18): 15693–701. doi: 10.1074/jbc.M212033200 [доступ 17 сентября 2017] Адрес: http://www.jbc.org/content/278/18/15693.long
  32. Brinkmann V., Reichard U., Goosmann C., Fauler B., Uhlemann Y., Weiss D.S., Weiss D.S., Weinrauch Y., Zychlinsky A. Neutrophil extracellular traps kill bacteria. Science. 2004; 303(5663): 1532–5.
  33. Brinkmann V., Zychlinsky A. Neutrophil extracellular traps: is immunity the second function of chromatin? J. Cell. Biol. 2012; 198: 773–83. doi: 10.1083/jcb.201203170. [доступ 17 сентября 2017] Адрес: http://jcb.rupress.org/content/198/5/773.long
  34. Klebanoff S.J., Kettle A.J., Rosen H., Winterbourn C.C., Nauseef W.M. Myeloperoxidase: a front-line defeder against phagocytosed microorganisms. J. Leukoc. Biol. 2013; 93(2): 185–98. doi: 10.1189/jlb.0712349.
  35. Theeß W., Sellau J., Steeg C., Klinke A., Baldus S., Cramer J.P., Jacobs T. Myeloperoxidase attenuates pathogen clearance during Plasmodium yoelii nonlethal infection. Infect Immun. 2016; 85(1); e00475–16. doi: 10.1128/IAI.00475–16. [доступ 17 сентября 2017] Адрес: http://iai.asm.org/content/85/1/e00475-16.long
  36. Delgado-Rizo V., Martínez-Guzmán M.A., Iñiguez-Gutierrez L., García-Orozco A., Alvarado-Navarro A., Fafutis-Morris M. Neutrophil Extracellular Traps and Its Implications in Inflammation: An Overview. Front Immunol. 2017; 8: 81. doi: 10.3389/fimmu.2017.00081. [доступ 17 сентября 2017] Адрес: http://journal.frontiersin.org/article/10.3389/fimmu.2017.00081/full
  37. Yang H., Biermann M.H., Brauner J.M., Liu Y., Zhao Y., Herrmann M. New Insights into Neutrophil Extracellular Traps: Mechanisms of Formation and Role in Inflammation. Front Immunol. 2016 Aug 12; 7: 302. doi: 10.3389/fimmu.2016.00302. [доступ 17 сентября 2017] Адрес: http://journal.frontiersin.org/article/10.3389/fimmu.2016.00302/full
  38. Chakraborty S., Kaur S., Guha S., Batra S.K. The multifaceted roles of neutrophil gelatinase associated lipocalin (NGAL) in inflammation and cancer. Biochim. Biophys. Acta. 2012; 1826(1): 129–69. doi: 10.1016/j.bbcan.2012.03.008.
  39. Koymans K.J., Feitsma L.J., Brondijk T.H., Aerts P.C., Lukkien E., Lössl P., Kok P.M; de Haas, Carla J. C; van Strijp, J.A G; Huizinga E.G. Structural basis for inhibition of TLR2 by staphylococcal superantigen-like protein 3 (SSL3). Proc. Natl. Acad. Sci. USA. 2015; 112(35): 11018–23. doi: 10.1073/pnas.1502026112. [доступ 17 сентября 2017] Адрес: http://www.pnas.org/content/112/35/11018.long
  40. Amulic B., Hayes G. Neutrophil extracellular traps. Curr. Biol. 2011; 21(9): R297–8. doi: 10.1016/j.cub.2011.03.021. [доступ 17 сентября 2017] Адрес: http://dx.doi.org/10.1016/j.cub.2011.03.021
  41. Pang Y.Y., Schwartz J., Bloomberg S., Boyd J.M., Horswill A.R., Nauseef W.M. Methionine sulfoxide reductases protect against oxidative stress in staphylococcus aureus encountering exogenous oxidants and human neutrophils. J. Innate Immun. 2014; 6(3): 353–64. doi: 10.1159/000355915. [доступ 17 сентября 2017] Адрес: https://www.karger.com/Article/FullText/355915
  42. Nishimura Y., Lee H., Hafenstein S., Kataoka C., Wakita T., Bergelson J.M., Bergelson J.M., Shimizu H. Enterovirus 71 binding to PSGL-1 on leukocytes: VP1–145 acts as a molecular switch to control receptor interaction. PLoS Pathog. 2013; 9(7): e1003511. doi: 10.1371/journal.ppat.1003511. [доступ 17 сентября 2017] Адрес: http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1003511
  43. Lee L.Y., Höök M., Haviland D., Wetsel R.A., Yonter E.O., Syribeys P., Vernachio J., Brown E.L. Inhibition of complement activation by a secreted Staphylococcus aureus protein. J. Infect. Dis. 2004; 190(3): 571–9. doi: 10.1086/422259.
  44. Higgins J., Loughman A., Van Kessel K.P., Van Strijp J.A., Foster T.J. Clumping factor A of Staphylococcus aureus inhibits phagocytosis by human polymorphonuclear leucocytes. FEMS Microb. Let. 2006; 258(2): 290–6. doi: 10.1111/j.1574–6968.2006.00229.x.
  45. Postma B., Poppelier M.J., van Galen J.C., Prossnitz E.R., van Strijp J.A., de Haas C.J., van Kessel, K.P. Chemotaxis inhibitory protein of Staphylococcus aureus binds specifically to the C5a and formylated peptide receptor. J. Immunol. 2004; 172(11): 6994–7001. doi: 10.4049/jimmunol.172.11.6994.
  46. van Wamel W.J., Rooijakkers S.H., Ruyken M., van Kessel K.P., van Strijp J.A. The innate immune modulators staphylococcal complement inhibitor and chemotaxis inhibitory protein of Staphylococcus aureus are located on β-hemolysin-converting bacteriophages. J. Bacteriol. 2006; 188(4): 1310–5. doi: 10.1128/JB.188.4.1310–1315.2006. [доступ 18 сентября 2017] Адрес: http://jb.asm.org/content/188/4/1310.long
  47. Gustafsson E., Rosén A., Barchan K., van Kessel K.P., Haraldsson K., Lindman S., et al. Directed evolution of chemotaxis inhibitory protein of Staphylococcus aureus generates biologically functional variants with reduced interaction with human antibodies. Protein Eng. Des. Sel. 2010; 23(2): 91–101. doi: 10.1093/protein/gzp062. [доступ 17 сентября 2017] Адрес: http://paperity.org/p/41905982/directed-evolution-of-chemotaxis-inhibitory-protein-of-staphylococ-cus-aureus-generates
  48. Thammavongsa V., Missiakas D.M., Schneewind O. Staphylococcus aureus degrades neutrophil extracellular traps to promote immune cell death. Science. 2013; 342(6160): 863–6. doi: 10.1126/science.1242255.
  49. Abate F., Malito E., Falugi F., Margarit Y Ros I., Bottomley M.J. Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of SpyCEP, a candidate antigen for a vaccine against Streptococcus pyogenes. Acta Cryst. 2013; 69(Pt10): 1103–6. doi: 10.1107/S1744309113024871. [доступ 17 сентября 2017] Адрес: http://scripts.iucr.org/cgi-bin/paper?S1744309113024871
  50. Lázaro-Díez M., Chapartegui-González I., Redondo-Salvo S., Leigh C., Merino D., San Segundo D., et al. Human neutrophils phagocytose and kill Acinetobacter baumannii and A. pittii. Sci. Rep. 2017; 7: 4571. doi: 10.1038/s41598–017–04870–8.
  51. Feng S., Bowden N., Fragiadaki M., Souilhol C., Hsiao S., Mahmoud M., Allen S., Pirri D., Ayllon B.T., Akhtar S., Thompson A.A., Jo H., Weber C., Ridger V., Schober A., Evans P.C. Mechanical Activation of Hypoxia-Inducible Factor 1α Drives Endothelial Dysfunction at Atheroprone Sites. Arterioscler. Thromb Vasc. Biol. 2017 Sep 7. pii: ATVBA-HA.117.309249. doi: 10.1161/ATVBAHA.117.309249.
  52. Guo X., Zhu Z., Zhang W., Meng X., Zhu Y., Han P., et al. Nuclear translocation of HIF-1α induced by influenza A (H1N1) infection is critical to the production of proinflammatory cytokines. Emerg Microbes Infect. 2017; 6(5): e39. doi: 10.1038/emi.2017.21. [доступ 17 сентября 2017] Адрес: https://www.nature.com/emi/journal/v6/n5/full/emi201721a.html
  53. Niyonsaba F., Madera L., Afacan N., Okumura K., Ogawa H., Hancock R.E. The innate defense regulator peptides IDR-HH2, IDR-1002, and IDR-1018 modulate human neutrophil functions. J. Leukoc. Biol. 2013; 94(1): 159–70. doi: 10.1189/jlb.1012497.
  54. Corriden R., Hollands A., Olson J., Derieux J., Lopez J., Chang J.T., Nizet V. Tamoxifen augments the innate immune function of neutrophils through modulation of intracellular ceramide. Nat. Commun. 2015; 6: 8369. doi: 10.1038/ncomms9369. [доступ 17 сентября 2017] Адрес: https://www.nature.com/articles/ncomms9369
  55. Hollands A., Corriden R., Gysler G., Dahesh S., Olson J., Raza Ali S., Kunkel M.T., Lin A.E., Forli S., Newton A.C., Kumar G., Nair B.G., Perry J.J.P., Nizet V. Natural product anacardic acid from cashew nut shells stimulates neutrophil extracellular trap production and bactericidal activity. J. Biol. Chem. 2016; 291(27): 13964–73. doi: 10.1074/jbc.M115.695866. [доступ 17 сентября 2017] Адрес: http://www.jbc.org/content/291/27/13964.long

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Matosova E.V., Andryukov B.G.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № 77 - 11525 от 04.01.2002.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies