Preview

Российский иммунологический журнал

Расширенный поиск

ЦИТОКИНЫ АДАПТИВНОГО ИММУНИТЕТА В ПАТОГЕНЕЗЕ РАССЕЯННОГО СКЛЕРОЗА

Полный текст:

Аннотация

В обзоре рассмотрены публикации в основном за последние 5–7 лет, касающиеся продукции цитокинов адаптивного иммунитета в клинике рассеянного склероза. Обсуждается возможное патогенетическое значение цитокинов различных субпопуляций Т-лимфоцитов: Th1, Th17, Th9, Th22, Th2 и Treg.

Об авторах

Г. Ф. Железникова
ФГБУ Научно-исследовательский институт детских инфекций ФМБА России
Россия

д. м. н., профессор, старший научный сотрудник отдела клинической лабораторной диагностики ФГБУ НИИ детских инфекций ФМБА России

197022 Санкт-Петербург, ул. Проф. Попова, 9



Н. В. Скрипченко
ФГБУ Научно-исследовательский институт детских инфекций ФМБА России; Санкт-Петербургский государственный педиатрический медицинский университет Минздрава России
Россия

з. д. н. РФ, д. м. н., профессор, заместитель директора ФГБУ НИИ детских инфекций ФМБА России по научной работе

Санкт-Петербург



Л. А. Алексеева
ФГБУ Научно-исследовательский институт детских инфекций ФМБА России
Россия

д. б. н., ведущий научный сотрудник, руководитель отдела клинической лабораторной диагностики ФГБУ НИИ детских инфекций ФМБА России

Санкт-Петербург



Е. Ю. Скрипченко
Санкт-Петербургский государственный педиатрический медицинский университет Минздрава России; ФГБУ Институт мозга человека РАН им. Н. П. Бехтеревой
Россия

к. м. н., заведующая детским неврологическим отделением ФГБУ «Институт мозга человека РАН им. Н. П. Бехтеревой»

Санкт-Петербург



Список литературы

1. Гусев Е.И., Завалишин И. А., Бойко А. Н. Рассеянный склероз и другие демиелинизирующие заболевания. Миклош, Москва 2004, 540 с.

2. Попова Е.В., Бойко А. Н., Хачанова Н. В., Шаранова С. Н. Вирус Эпштейна–Барр в патогенезе рассеянного склероза. Журн. неврол. и психиатр. 2014, 114(2–2), 29–34.

3. Железникова Г.Ф., Скрипченко Н. В., Иванова Г. П., Суровцева А. В., Скрипченко Е. Ю. Факторы иммунопатогенеза рассеянного склероза. Рос. иммунол. журн. 2015, 9(3), 261–282.

4. Lisak R., Nedelkoska L., Studzinski D., Bealmear B., Xu W., Benjamins J. Cytokines regulate neuronal gene expression: differential effects of Th1, Th2 and monocyte/macrophage cytokines. J. Neuroimmunol. 2011, 238(1–2), 19–33.

5. Монастырская Е.А., Лямина С. В., Малышев И. Ю. М1 и М2 фенотипы активированных макрофагов и их роль в иммунном ответе и при патологии. Патогенез 2008, 6(4), 31–39.

6. Moldovan I., Rudick R., Cotleur A., Born S., Lee J., Karafa M., Pelfrey C. Interferon gamma responses to myelin peptides in multiple sclerosis correlate with a new clinical measure of disease progression. J. Neuroimmunol. 2003, 141(1–2), 132–140.

7. Ханох Е.В., Рождественский А. С., Долгих Т. И., Ершов А. В., Какуля А. В., Делов Р. А. Фагоцитарная активность и система интерферона у больных с различными типами течения рассеянного склероза. Журн. неврол. и психиатр. 2011, 2–2. С. 21–24.

8. Simpson S., Stewart N., van der Mei I., Otahal P., Charlesworth J., Ponsonby A., Blizzard L., Dwyer T., Pittas F., Gies P., Taylor B. Stimulated PBMC-produced IFN-γ and TNF-α are associated with altered relapse risk in multiple sclerosis: results from a prospective cohort study. J. Neurol. Neurosurg. Psychiatry. 2015, 86(2), 200–207.

9. Kallaur A., Oliveira S., Colado Simão A., Delicato de Almeida E., Kaminami Morimoto H., Lopes J., de Carvalho Jennings Pereira W., Marques Andrade R., Muliterno Pelegrino L., Donizete Borelli S., Kaimen-Maciel D., Reiche E. Cytokine profile in relapsing-remitting multiple sclerosis patients and the association between progression and activity of the disease. Mol. Med. Rep. 2013, 7(3), 1010–1020.

10. Trenova A., Slavov G., Manova M., Kostadinova I. Cytokines and disability in interferon-β-1b treated and untreated women with multiple sclerosis. Arch. Med. Res. 2014, 45(6), 495–500.

11. Tang S., Fan X., Pan Q., Sun Q., Liu Y. Decreased expression of IL-27 and its correlation with Th1 and Th17 cells in progressive multiple sclerosis. J. Neurol. Sci. 2015, 348(1–2), 174–180.

12. Железникова Г.Ф., Скрипченко Н. В., Иванова Г. П., Суровцева А. В., Монахова Н. Е. Цитокины и герпесвирусы при рассеянном склерозе у детей. Инфекция и иммунитет 2015, 5(4), 349–358.

13. Masters S., Mielke L., Cornish A., Sutton C., O’Donnell J., Cengia L., Roberts A., Wicks I., Mills K., Croker B. Regulation of interleukin-1beta by interferon-gamma is species specific, limited by suppressor of cytokine signalling 1 and influences interleukin-17 production. EMBO Rep. 2010, 11(8), 640–646.

14. Chen J., Liu X. The role of interferon gamma in regulation of CD4 + T-cells and its clinical implications. Cell. Immunol. 2009, 254(2), 85–90.

15. Hashioka S., Klegeris A., Schwab C., McGeer P. Interferon-gamma-dependent cytotoxic activation of human astrocytes and astrocytoma cells. Neurobiol Aging 2009, 30(12), 1924–1935.

16. Wang Y., Ren Z., Tao D., Tilwalli S., Goswami R., Balabanov R. STAT1/IRF-1 signaling pathway mediates the injurious effect of interferon-gamma on oligodendrocyte progenitor cells. Glia 2010, 58(2), 195–208.

17. Bsibsi M., Peferoen L., Holtman I., Nacken P., Gerritsen W., Witte M., van Horssen J., Eggen B., van der Valk P., Amor S., van Noort J. Demyelination during multiple sclerosis is associated with combined activation of microglia/macrophages by IFN-γ and alpha B-crystallin. Acta Neuropathol. 2014, 128(2), 215–229.

18. Pusic A., Pusic K., Clayton B., Kraig R. IFNγ-stimulated dendritic cell exosomes as a potential therapeutic for remyelination. J. Neuroimmunol. 2014, 266(1–2), 12–23.

19. Wang K., Lee C., Chen S., Chen J., Yang C., Chen S., Tsai C. Distinct serum cytokine profiles in neuromyelitis optica and multiple sclerosis. J. Interferon Cytokine Res. 2013, 33(2), 58–64.

20. Martin J., Perry J., Jakhete N., Wang X., Bielekova B. An IL-2 paradox: blocking CD25 on T-cells induces IL-2-driven activation of CD56(bright) NK cells. J. Immunol. 2010, 185(2), 1311–1320.

21. Ottoboni L., Frohlich I., Lee M., Healy B., Keenan B., Xia Z., Chitnis T., Guttmann C., Khoury S., Weiner H., Hafler D., De Jager P. Clinical relevance and functional consequences of the TNFRSF1A multiple sclerosis locus. Neurology 2013, 81(22), 1891–1899.

22. Shabgah A., Fattahi E., Shahneh F. Interleukin-17 in human inflammatory diseases. Postepy Dermatol. Alergol. 2014, 31(4), 256–261.

23. Wang X., Ma C., Wu J., Zhu J. Roles of T helper 17 cells and interleukin-17 in neuroautoimmune diseases with emphasis on multiple sclerosis and Guillain-Barré syndrome as well as their animal models. J. Neurosci. Res. 2013, 91(7), 871–881.

24. Huber A., Wang L., Han P., Zhang X., Ekholm S., Srinivasan A., Irani D., Segal B. Dysregulation of the IL-23/IL-17 axis and myeloid factors in secondary progressive MS. Neurology 2014, 83(17), 1500–1507.

25. Cao Y., Goods B., Raddassi K., Nepom G., Kwok W., Love J., Hafler D. Functional inflammatory profiles distinguish myelin-reactive T-cells from patients with multiple sclerosis. Sci. Transl. Med. 2015, 7(287), 287ra74.

26. Wing A., Hygino J., Ferreira T., Kasahara T., Barros P., Sacramento P., Andrade R., Camargo S., Rueda F., Alves-Leon S., Vasconcelos C., Alvarenga R., Bento C. Interleukin-17- and interleukin-22-secreting myelinspecific CD4(+) T cells resistant to corticoids are related with active brain lesions in multiple sclerosis patients. Immunology 2016, 147(2), 212–220.

27. Babaloo Z., Aliparasti M., Babaiea F., Almasi S., Baradaran B., Farhoudi M. The role of Th17 cells in patients with relapsing-remitting multiple sclerosis: interleukin-17A and interleukin-17F serum levels. Immunol. Lett. 2015, 164(2), 76–80.

28. Muls N., Jnaoui K., Dang H., Wauters A., Van Snick J., Sindic C., van Pesch V. Upregulation of IL-17, but not of IL-9, in circulating cells of CIS and relapsing MS patients. Impact of corticosteroid therapy on the cytokine network. J. Neuroimmunol. 2012, 243(1–2), 73–80.

29. Ferreira T., Hygino J., Barros P., Teixeira B., Kasahara T., Linhares U., Lopes L., Vasconcelos C., Alvarenga R., Wing A., Andrade R., Andrade A., Bento C. Endogenous interleukin-6 amplifies interleukin-17 production and corticoid-resistance in peripheral T-cells from patients with multiple sclerosis. Immunology. 2014, 143(4), 560–568.

30. Tao Y., Zhang X., Zivadinov R., Dwyer M., Kennedy C., Bergsland N., Ramasamy D., Durfee J., Hojnacki D., Hayward B., Dangond F., Weinstock-Guttman B., Markovic-Plese S. Immunologic and MRI markers of the therapeutic effect of IFN-β-1a in relapsing-remitting MS. Neurol. Neuroimmunol. Neuroinflamm. 2015, 2(6), e176.

31. Esendagli G., Kurne A., Sayat G., Kilic A., Guc D., Karabudak R. Evaluation of Th17-related cytokines and receptors in multiple sclerosis patients under interferon beta-1 therapy. J. Neuroimmunol. 2013, 255(1–2), 81–84.

32. Hartung H., Steinman L., Goodin D., Comi G., Cook S., Filippi M., O’Connor P., Jeffery D., Kappos L., Axtell R., Knappertz V., Bogumil T., Schwenke S., Croze E., Sandbrink R., Pohl C. Interleukin 17F level and interferon β response in patients with multiple sclerosis. JAMA Neurol. 2013, 70(8), 1017–1021.

33. Balasa R., Maier S., Voidazan S., Hutanu A., Bajko Z., Motataianu A. An Intricate Mechanism of Action of Avonex in Relapsing Remitting Multiple Sclerosis Patients: Variation of Serum Titre of Interleukin-17A, Interleukin-10 and Transforming Growth Factor-β. CNS Neurol. Disord. Drug Targets. 2015, 14(6), 804–810.

34. Zhang X., Tao Y., Chopra M., Dujmovic-Basuroski I., Jin J., Tang Y., Drulovic J., Markovic-Plese S. IL-11 Induces Th17 Cell Responses in Patients with Early Relapsing-Remitting Multiple Sclerosis. J. Immunol. 2015, 194(11), 5139–5149.

35. Paintlia M., Paintlia A., Singh A., Singh I. Synergistic activity of interleukin-17 and tumor necrosis factor-α enhances oxidative stress-mediated oligodendrocyte apoptosis. J. Neurochem. 2011, 116(4), 508–521.

36. Stassen M., Schmitt E., Bopp T. From interleukin-9 to T helper 9 cells. Ann. N.Y. Acad. Sci. 2012, 1247, 56–68.

37. Nowak E., Weaver C., Turner H., Begum-Haque S., Becher B., Schreiner B., Coyle A., Kasper L., Noelle R. IL-9 as a mediator of Th17-driven inflammatory disease. J. Exp. Med. 2009, 206(8), 1653–1660.

38. Zhou Y., Sonobe Y., Akahori T., Jin S., Kawanokuchi J., Noda M., Iwakura Y., Mizuno T., Suzumura A. IL-9 promotes Th17 cell migration into the central nervous system via CC chemokine ligand-20 produced by astrocytes. J. Immunol. 2011, 186(7), 4415–4421.

39. Wynn T. Type 2 cytokines: mechanisms and therapeutic strategies. Nat. Rev. Immunol. 2015, 15(5), 271–282.

40. Ruocco G., Rossi S., Motta C., Macchiarulo G., Barbieri F., De Bardi M., Borsellino G., Finardi A., Grasso M., Ruggieri S., Gasperini C., Furlan R., Centonze D., Battistini L., Volpe E. T helper 9 cells induced by plasmacytoid dendritic cells regulate interleukin-17 in multiple sclerosis. Clin. Sci (Lond). 2015, 129(4), 291–303.

41. Ulusoy C., Tüzün E., Kürtüncü M., Türkoğlu R., Akman-Demir G., Eraksoy M. Comparison of the cytokine profiles of patients with neuronal-antibody-associated central nervous system disorders. Int. J. Neurosci. 2012, 122(6), 284–289.

42. Xin N., Namaka M., Dou C., Zhang Y. Exploring the role of interleukin-22 in neurological and autoimmune disorders. Int. Immunopharmacol. 2015, 28(2), 1076–1083.

43. Xu W., Li R., Dai Y., Wu A., Wang H., Cheng C., Qiu W., Lu Z., Zhong X., Shu Y., Kermode A., Hu X. IL-22 secreting CD4 + T-cells in the patients with neuromyelitis optica and multiple sclerosis. J. Neuroimmunol. 2013, 261(1–2), 87–91.

44. Vidal P., Lemmens E., Dooley D., Hendrix S. The role of “anti-inflammatory” cytokines in axon regeneration. Cytokine Growth Factor Rev. 2013, 24(1), 1–12.

45. Zhao X., Wang H., Sun G., Zhang J., Edwards N., Aronowski J. Neuronal Interleukin-4 as a Modulator of Microglial Pathways and Ischemic Brain Damage. J. Neurosci. 2015, 35(32), 11281–11291.

46. Hulshof S., Montagne L., De Groot C., Van Der Valk P. Cellular localization and expression patterns of interleukin-10, interleukin-4, and their receptors in multiple sclerosis lesions. Glia 2002, 38(1), 24–35.

47. Martins T., Rose J., Jaskowski T., Wilson A., Husebye D., Seraj H., Hill H. Analysis of proinflammatory and anti-inflammatory cytokine serum concentrations in patients with multiple sclerosis by using a multiplexed immunoassay. Am. J. Clin. Pathol. 2011, 136(5), 696–704.

48. Trenova A., Manova M., Kostadinova I., Murdjeva M., Hristova D., Vasileva T.V., Zahariev Z. Clinical and laboratory study of pro-inflammatory and antiinflammatory cytokines in women with multiple sclerosis. Folia Med. (Plovdiv). 2011, 53(2), 29–35.

49. Obradović D., Kataranovski M., Dincić E., Obradović S., Colić M. Tumor necrosis factor-alfa and interleukin-4 in cerebrospinal fluid and plasma in different clinical forms of multiple sclerosis. Vojnosanit. Pregl. 2012, 69(2), 151–156.

50. Broughton S., Nero T., Dhagat U., Kan W., Hercus T., Tvorogov D., Lopez A., Parker M. The βc receptor family – Structural insights and their functional implications. Cytokine 2015, 74(2), 247–258.

51. Moldovan I., Cotleur A., Zamor N., Butler R., Pelfrey C. Multiple sclerosis patients show sexual dimorphism in cytokine responses to myelin antigens. J. Neuroimmunol. 2008, 193(1–2), 161–169.

52. Bao K., Reinhardt R. The differential expression of IL-4 and IL-13 and its impact on type-2 immunity. Cytokine 2015, 75(1), 25–37.

53. van Noort J., Bsibsi M., Gerritsen W., van der Valk P., Bajramovic J., Steinman L., Amor S. Alpha b-crystallin is a target for adaptive immune responses and a trigger of innate responses in preactive multiple sclerosis lesions. J. Neuropathol. Exp. Neurol. 2010, 69(7), 694–703.

54. Ochi H., Osoegawa M., Wu X., Minohara M., Horiuchi I., Murai H., Furuya H., Kira J. Increased IL-13 but not IL-5 production by CD4-positive T-cells and CD8-positive T-cells in multiple sclerosis during relapse phase. J. Neurol. Sci. 2002, 201(1–2), 45–51.

55. Ochi H., Feng-Jun M., Osoegawa M., Minohara M., Murai H., Taniwaki T., Kira J. Time-dependent cytokine deviation toward the Th2 side in Japanese multiple sclerosis patients with interferon beta-1b. J. Neurol. Sci. 2004, 222(1–2), 65–73.

56. Jensen J., Langkilde A., Frederiksen J., Sellebjerg F. CD8 + T-cell activation correlates with disease activity in clinically isolated syndromes and is regulated by interferon-beta treatment. J. Neuroimmunol. 2006, 179(1–2), 163–172.

57. Musabak U., Demirkaya S., Genç G., Ilikci R., Odabasi Z. Serum adiponectin, TNF-α, IL-12p70, and IL-13 levels in multiple sclerosis and the eff ects of different therapy regimens. Neuroimmunomodulation. 2011, 18(1), 57–66.

58. Wiesemann E., Klatt J., Wenzel C., Heidenreich F., Windhagen A. Correlation of serum IL-13 and IL-5 levels with clinical response to Glatiramer acetate in patients with multiple sclerosis. Clin. Exp. Immunol. 2003, 133(3), 454–460.

59. Rossi S., Mancino R., Bergami A., Mori F., Castelli M., De Chiara V., Studer V., Mataluni G., Sancesario G., Parisi V., Kusayanagi H., Bernardi G., Nucci C., Bernardini S., Martino G., Furlan R., Centonze D. Potential role of IL-13 in neuroprotection and cortical excitability regulation in multiple sclerosis. Mult. Scler. 2011, 17(11), 1301–1312.

60. Bettini M., Vignali D. Regulatory T-cells and inhibitory cytokines in autoimmunity. Curr. Opin. Immunol. 2009, 21(6), 612–618.

61. Edwards L., Sharrack B., Ismail A., Tumani H., Constantinescu C. Central infl ammation versus peripheral regulation in multiple sclerosis. J. Neurol. 2011, 258(8), 1518–1527.


Для цитирования:


Железникова Г.Ф., Скрипченко Н.В., Алексеева Л.А., Скрипченко Е.Ю. ЦИТОКИНЫ АДАПТИВНОГО ИММУНИТЕТА В ПАТОГЕНЕЗЕ РАССЕЯННОГО СКЛЕРОЗА. Российский иммунологический журнал. 2017;20(1):13-25.

For citation:


Zheleznikova G.F., Skripchenko N.V., Alekseeva L.A., Skripchenko E.Yu. CYTOKINES OF ADAPTIVE IMMUNITY IN THE PATHOGENESIS OF MULTIPLE SCLEROSIS. Russian Journal of Immunology. 2017;20(1):13-25. (In Russ.)

Просмотров: 38


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1028-7221 (Print)